Exchange Rate Forecasting with Combined Genetic Algorithms
نویسنده
چکیده
In recent years, Artificial Intelligence (AI) methods have proven to be successful tools for forecasting in the sectors of business, finance, medical science and engineering. In this study, we utilize a Genetic Algorithm (GA) to select the optimal variable weights in order to predict exchange rates using Genetic Algorithms, Particle Swam Optimization (PSO) and Back Propagation Network (BPN). Then, we construct three models: GA_GA, GA_PSO, and GA_BPN. Fundamentally, we expect enhanced variable selection to provide improved forecasting performance. The results of our experiments indicate that the GA_GA model achieves the best forecasting performance and is highly consistent with the actual data.
منابع مشابه
Machine learning algorithms for time series in financial markets
This research is related to the usefulness of different machine learning methods in forecasting time series on financial markets. The main issue in this field is that economic managers and scientific society are still longing for more accurate forecasting algorithms. Fulfilling this request leads to an increase in forecasting quality and, therefore, more profitability and efficiency. In this pa...
متن کاملForecasting Stock Market Using Wavelet Transforms and Neural Networks: An integrated system based on Fuzzy Genetic algorithm (Case study of price index of Tehran Stock Exchange)
The jamor purpose of the present research is to predict the total stock market index of Tehran Stock Exchange, using a combined method of Wavelet transforms, Fuzzy genetics, and neural network in order to predict the active participations of finance market as well as macro decision makers.To do so, first the prediction was made by neural network, then a series of price index was decomposed by w...
متن کاملNovel Hybrid Fuzzy-Evolutionary Algorithms for Optimization of a Fuzzy Expert System Applied to Dust Phenomenon Forecasting Problem
Nowadays, dust phenomenon is one of the important challenges in warm and dry areas. Forecasting the phenomenon before its occurrence helps to take precautionary steps to prevent its consequences. Fuzzy expert systems capabilities have been taken into account to assist and cope with the uncertainty associated to complex environments such as dust forecasting problem. This paper presents novel hyb...
متن کاملNovel Hybrid Fuzzy-Evolutionary Algorithms for Optimization of a Fuzzy Expert System Applied to Dust Phenomenon Forecasting Problem
Nowadays, dust phenomenon is one of the important challenges in warm and dry areas. Forecasting the phenomenon before its occurrence helps to take precautionary steps to prevent its consequences. Fuzzy expert systems capabilities have been taken into account to assist and cope with the uncertainty associated to complex environments such as dust forecasting problem. This paper presents novel hyb...
متن کاملProvide a stock price forecasting model using deep learning algorithms and its use in the pricing of Islamic bank stocks
Predicting stock prices is complicated; various components, such as the general state of the economy, political events, and investor expectations, affect the stock market. The stock market is in fact a chaotic nonlinear system that depends on various political, economic and psychological factors. To overcome the limitations of traditional analysis techniques in predicting nonlinear patterns, ex...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2009